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A vortex theory of animal flight. Part 2. 
The forward flight of birds 

By J. M. V. RAYNER 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge? 

(Receivod 18 May 1978) 

The vortex wake of a bird in steady forward flight is modelled by a chain of elliptical 
vortex rings, each generated by a single downstroke. The shape and inclination of each 
ring are determined by the downstroke geometry, and the size of each ring by the 
wing circulation; the momentum of the ring must overcome parasitic and profile 
drags and the bird’s weight for the duration of a stroke period. From the equation 
of motion i t  is possible to determine exactly the kinematics of the wing-stroke for 
any flight velocity, This approach agrees more readily with the nature of the wing- 
stroke than the classical actuator disk and momentum-jet theory; i t  also dispenses 
with lift and induced drag coefficients and is not bound by the constraints of steady- 
state aerodynamics. The induced power is calculated as the mean rate of increase of 
wake kinetic energy. The remaining components of the flight power (parasite and 
profile) are calculated by traditional methods ; there is some consideration of different 
representations of body parasite drag. The lift coefficient required for flight is also 
calculated; for virtually all birds the lift coefficient in slow flight and hovering is too 
large to be consistent with steady-state aerodynamics. 

A bird is concerned largely to  reduce its power consumption on all but the shortest 
flights. The model suggests that  there are a number of ways in which power reduction 
can be achieved. These various strategies are in good agreement with observation. 

1. Introduction and outline of the model 
The theory described in this paper is an attempt to find a more rigorous physical 

background to the problem of the steady forward flight of birds than has been 
available in previous work on the subject. It provides realistic estimates of power 
consumption and of mean lift coefficients by assuming that the wake consists of 
a sequence of disjoint plane elliptic vortex rings. Power consumption is of interest 
as it is one of the main factors involved in the choice of a particular flight strategy 
or ‘style’; reduction of power is of great concern to a bird on long (e.g. migratory) 
flights. The mean lift coefficient indicates to what extent we can expect steady or 
quasi-steady aerodynamics to apply to the whole wing. Existing theories depend on 
steady-state analysis and are unsatisfactory, especially a t  low velocities, and i t  is 
the need to overcome this difficulty that has been the main inspiration for this theory. 

Flight is one of many responses to evolutionary stimulus found in the animal king- 
dom; it allows great flexibility in habits and habitat and requires a simple locomotor 
system in which only one set of organs, the wings, generates all of the forces required. 
In  this respect all flying animals are similar, but the method by which flight is achieved 

t Present address : Department of Zoology, University of Bristol. 

0022- 1120/79/4171-6260 $02.00 0 1979 Cambridge University Pross 

25-2 



732 J .  M .  V .  Rayner 

varies greatly between birds and insects; we are concerned here solely with birds, and 
make only passing reference to insects and bats. We neglect the hummingbirds 
(Trochili), whose flight behaviour is more akin to that of the insects. 

The aerodynamic aspects of animal flight are of great interest to ornithologists 
and physicists alike, but the topic is complex and must be simplified before any 
progress can be made. The goal of most such studies is the estimation from theoretical 
arguments of power consumption under various flight conditions, which can be com- 
pared with physiological measurements. Power is important as it indicates the rate 
at which fuel reserves are used up, and the rate at which chemical energy is converted 
into mechanical work by the muscles. Both of these are limited, and form a major 
constraint on flight capability. 

We must isolate the most important dimensions of the body (morphologic para- 
meters) and characteristics of the wing-stroke (kinematic parameters) during flight. 
The morphologic parameters we use are the mass M ,  wing semi-span b (assumed equal 
t o  the wing length), wing chord, co, wing area (both wings) S, and the masses ms and 
mp of the two pairs of muscles powering Dhe up- and downstrokes. (For most birds 
m, is about one-tenth of mp.) The kinematic parameters can be reduced to four. The 
most important is the stroke period T ,  which depends on body size; its measurement 
is fraught with difficulties; the problems involved are discussed in Rayner (1 979 b, $ 5). 
Associated with T are the downstroke ratio r (so that rT is the duration of the down- 
stroke) and the beat amplitude $. Typically r is about $ or slightly less and $ is 
between 80 and 120", rising to nearly 180" during hovering in some instances. The 
remaining parameter is the stroke-plane angle y. We assume that the leading edges of 
the wings remain in the same plane throughout the downstroke; y is the angle be- 
tween this plane and the horizontal. 

The relative magnitude and durations of the different phases of the wing-stroke 
as characterized (at least, simplified) by the kinematic parameters together with the 
morphologic parameters for a particular bird enable us to define and quantify 'flight 
style'. Flight style is a term introduced to describe the pattern of flight adopted by 
an individual or a group from a particular species. We can assume that the style 
chosen carries distinct advantages, either aerodynamic, physiological, anatomical or 
simply behavioural, and that the range of kinematic and morphological parameters 
available is associated with the choice of style. This could be manifest as a preference 
for flying in a flock or in the V-shaped pattern typical of migrating geese; it might 
lead to gliding or soaring, especially if the animal is large, or to a combination of 
gliding with intermittent bursts of wing flaps (undulating flight). Many small birds 
cansaveenergy by using boundingflight (Rayner 1977,19793, $$4and5); themajority 
of species will spend some of their time in the air in steady level flight, and it is here 
that the morphology will dictate, as a means of saving energy or of relaxing the 
structural or physiological constraints which limit flight, the choice of kinematic 
parameters and hence of flight style. 

In some species the flight style depends upon the flight velocity, and we divide the 
speed range broadly into two parts. Fast forward flight is the normal cruising mode; 
the wing always has some component of forward velocity and the beat amplitudes 
are small. In slow forward flight the wing-beats are generally of larger amplitude with 
the tips coming to rest a t  the extremes of the stroke. Oehme (1968) found discontinu- 
ities in both the wing-beat amplitude and the period at  the transition from slow to 
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fast flight in the swift, and Oehme & Kitzler (19756) noted that in fast forward flight 
of the pigeon r increases and Q decreases with increasing flight speed. Hovering can 
be considered to be the lower limit of slow forward flight; not all birds are able to 
hover because of the high energy cost and the difficulty of obtaining suficient lift; 
there is a marked drop in power as the forward velocity increases from hovering. 

I n  the previous part of this paper (Rayner 1979a, referred to as I) a detailed appli- 
cation of the vortex theory to animal hovering was given. Many of the arguments 
given in I, 3 1, are equally relevant to forward flight and need only be summarized 
here. Paper I discussed solely the induced power, since in hovering the other power 
components are easy t o  calculate; here, a largely similar technique is used for the 
induced power, but careful consideration is given also to the drag forces on the body, 
which influence the strength and inclination of the wake momentum required for 
propulsion and lift. To give a true picture of the total power consumed in forward 
flight we also calculate the rate of working required to overcome parasite and profile 
drags. A further paper (Rayner 19796) gives a less mathematical version of the theory 
given in I and here, together with some of the biological deductions which we may 
make. 

The usual method of calculating the induced power is the Rankine-Froude momen- 
tum jet produced by an actuator disk (I, 5 2). The most obvious fault of this approach 
is its assumption that momentum is generated steadily, clearly untenable in animal 
flight. I n  hovering it is conceptually straightforward to  imagine the vortex sheet 
forming the boundary of the jet to be broken up into discrete elements, which we 
represent in I as small-cored circular vortex rings. I n  forward flight the procedure 
we should use is not evident, since the wake momentum cannot be parallel to the 
wake itself, and it is difficult to see how we should define the actuator disk (e.g. what 
size and inclination i t  should have). However, it is clear that  a trailing vortex sheet is 
formed behind the wings during each downstroke, and we seek a simple geometric 
representation for the final form of this sheet. 

In  avian flight the upstroke is typically very lightly loaded, and has relatively 
little aerodynamic effect. This implies that the vortex element produced by each 
downstroke is distinct from its neighbours; a t  high flight velocities the elements 
are well spaced and interaction between them is minimal. Provided that we can 
find a suitable geometry for the wake elements, the induced power can be calcu- 
lated as the rate of supply of kinetic energy to the flows induced in the wake by 
vorticity . 

The trailing vortex sheet is a complicated, twisted structure; its boundary is defined 
by the wing-tip paths and its ends by the starting and stopping vortices formed a t  the 
beginning and end of each stroke. It contains vorticity both parallel and transverse 
to the direction of flight, and is deforming continuously. Evidently it would be a 
major problem to trace the evolution of such a vortex sheet. However, according to 
the arguments given in I, 3 1, and expanded in Rayner (19796, 33), we can expect the 
sheet to roll up into a closed vortex loop of small core cross-section, and with the 
same impulse and energy as the sheet provided that the roll-up occurs rapidly. We 
must assume that this is so, and that no destructive instability operates within the 
time scale of the wing beat. It seems reasonable, as an extension of the arguments 
given in I, 3 1, that the resulting vortex loop should be elliptic in shape (see figure 3), 
tilted with respect to the flight direction in order that  there is a forward component 
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of momentum, and with dimensions proportional to  the wing-span and to the distance 
between the positions of the wing tips a t  the start and finish of the downstroke. The 
constant of proportionality will (as in I, 8 5) depend upon the circulation distribution 
on the wing. We base the forward-flight model on the assumption that  this is the 
shape of each wake element, a t  least for the time after generation during which the 
element can have any effect on the power requirement. 

There is some evidence that  vortex rings are the mechanism by which wake mo- 
mentum is generated, although there is no information about their shape. Ellington 
(1978) has shown that vortex loops are the mechanism of insect hovering; we argue 
in I, $ 3  that  while stroke kinematics differ between birds and insects the wakes are 
similar, and that we can expect vortex rings in avian hovering. Magnan, Perrilliat- 
Botonet & Girard (1938) photographed a sequence of closed vortices behind a pigeon 
in very slow flight; Pennycuick & Lock (1976) give an  argument based on feather 
deformation which suggests (indirectly) how vortices are shed by the downstroke. 

To obtain the wake kinetic energy, and hence the induced power, we need expres- 
sions for the self-induced velocity and energy of an isolated small-cored elliptic 
vortex loop; these are derived in the appendix. 

The model is in outline an extension of that  given by Pennycuick (1968, 1969), 
but by comparison offers a wider range of input parameters, more exact calculation 
of the profile power and the nature of the induced forces, and most important, a 
more satisfactory description of the wake. Pennycuick’s theory has been modified 
by Tucker (1972, 1973); the various versions have been summarized by Pennycuick 
(1975), and the biological implications in some detail by Oehme, Dathe & Kitzler 
(1977). Although it is the most widely used flight power theory, Pennycuick’s is not 
the only one available; a similar but less satisfactory model again based on the mo- 
mentum jet, but omitting profile drag, has been given by Greenewalt (1975). I n  
addition, various earlier theories are summarized by Brown (1963). Osborne (1951) 
and Weis-Fogh (1972, 1973), both concerned with insect flight, have prompted the 
method of calculation of profile drag and mean lift coefficients we use. 

Among over valuable studies of flight are reviews by Lighthill (1974) and Nachtigall 
(1974). Detailed descriptions of wing motions are given in Brown (1963) and Bilo 
(1971, 1972), and many fine photographs will be found in Riippell (1977). Cone 
(1968) attempts to  set up a vortex theory of flapping .flight, which becomes too 
complicated to be solvable. It is assumed that the reader is familiar with the essentials 
of avian anatomy and with the nature of the wing-stroke. These are widely described 
in the literature; among the more useful discussions, in addition to those above, is 
George & Berger (1966). 

2. Power components 
The analysis of the active flight of birds (and insects) is a problem in unsteady 

aerodynamics of extreme complexity. We have little information about the air flow 
near to the animal’s body and wings, and cannot hope to  obtain this by the usual 
aerodynamic techniques. The impulse method, applied to  a vortex wake, allows us to 
deduce the power consumed. This method is classically concerned with the dynamics 
of a fixed-wing aircraft, where the wings are responsible for lift and thrust is obtained 
from essentially separate propellers or jets. I n  a helicopter there is more similarity 
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with natural flight as the rotor blades generate both lift and thrust, but it is difficult 
to relate helicopter geometry to  a bird or insect in forward flight. An almost universal 
property of flying animals is that  the same pair of organs, the wings, are responsible 
for both lift and thrust, and that all of the energy required for flight must be provided 
by the locomotor muscles. I n  some species of bird the tail and feet can provide some 
additional lift, but their more usual function is to assist with stability and to  increase 
drag while landing or decelerating. Body drag is sizeable, and the body can also con- 
tribute to  lift (Csicsbky 1977). 

Flight-power consumption and metabolic power supply are major factors dictating 
an animal’s flight proficiency, in much the same way that the equivalent criteria are 
critical for an aircraft. For an aircraft the power required for steady level flight can 
be divided into three components: 

PDar, parasite power to  overcome body drag; 

Ppro, profile power to  overcome wing form and friction drag; 

P,, induced power to  overcome the induced drag of the wings. 

In  level flight the angle of attack of the wings is adjusted such that lift balances the 
weight, and engine thrust is altered independently t o  balance the total drag. The 
aerodynamic characteristics of an aircraft are well known in terms of force coefficients, 
and the power components may be readily evaluated. 

A similar framework is suitable to  describe animal flight. The parasite and profile 
powers again measure the work rate overcoming body and wing drags, but the induced 
power cannot be conceived as the rate of working against induced drag since the 
formulation of induced drag in terms of lift and drag coefficients is not consistent 
with unsteady aerodynamics, which we know must apply a t  least a t  low flight veloci- 
ties. The novel approach used here is to calculate the induced power as the rate at 
which kinetic energy is supplied to vortex-induced flows in the wake whose momentum 
provides lift and thrust. The energy expended against profile and parasite drags 
passes to  a viscous wake which we assume to be independent from the ‘useful ’ vortex 
wake. 

I n  addition to  the parasite, profile and induced powers we might also include the 
energy lost in decelerating the wings a t  the end of the downstroke (which becomes 
inertial power). Weis-Fogh (1973) has shown that this is significant for insects in 
hovering; because of the different scales involved i t  is not likely to contribute signi- 
ficantly in a bird’s energy budget, and we neglect i t  here. 

The vortex sheet shed during each downstroke is assumed to  become a plane elliptic 
vortex ring of small core radius (see Rayner 19793, $3) ,  with appropriate dimensions 
and orientation; each ring must support the bird’s weight and overcome profile and 
parasite drags for the duration T of the stroke cycle. Successive rings are separated 
by self-convection and by the distance travelled by the bird in a time T; the configura- 
tion is illustrated in figure 3. The induced power is calculated as the increment in wake 
kinetic energy on the addition of a further member to  the chain of vortices (assumed 
semi-infinite) formed by preceding wing-strokes. 

Our procedure is to  assume that the kinematic parameters 4, r and T are fixed, and 
to set LIP the equations for the balance of the forces on the animal as a function of 
the stroke-plane angle y for a forward velocity V .  With the addition of a simple 
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description of the mechanism of formation of each vortex ring we can solve these 
equations to obtain y( V ) ,  and hence find the power components as functions of V .  

3. Forces on the body 
We assume that throughout each downstroke the leading edges of the wings remain 

in a plane relative to the bird which is inclined to the horizontal a t  an angle y and that 
during each upstroke the wing is flexed to minimize aerodynamic resistance. The 
notation is indicated in figures 1 (a )  and ( b ) .  The angular position of the wing is given 
by O ( t )  (0 < t < 75") and radial position on a wing by bg (0  < < < 1). The left and right 
wings are denoted by 5 signs, respectively. The wing chord is given by c,C([), where 
C(0) = 1. Oehme & Kitzler ( 1 9 7 5 ~ )  have shown that bird wings in general conform 
closely to the shape 

( la)  

(1b) 

we use this expression throughout. The bird's weight is given by - Mgk. 
The drag forces acting on the bird are the parasite drag of the body and the result.ant 

of the profile drag of the wings. We consider first the parasite drag D p a r .  This is the 
force on the body due to its resistance to the free air stream and to the induced flows 
generated by the wing motions; the induced contribution is very small and will be 
neglected. In the same way we neglect any drag caused by winglbody interactions 
as small. 

There is some doubt about the value which should be assigned to the parasite drag. 
It can be assumed to be of the form 

D p a r  = Vz, (2) 

where the vector Afp,  which has the dimensions of area, is independent of V .  Its 
components are the 'equivalent flat-plate areas' of the body for flow in the appro- 
priate direction; they are considerably smaller than the body surface area, since the 
body is well streamlined. If the body is inclined above the free air stream there is 
likely to be a significant contribution to lift, but of the various published measure- 
ments of drag only one set takes account of this complication. The air density is 
given by p. 

Difficulties in assigning a value to Afp can arise in two ways. First, measurements 
on real birds are difficult to make, and are hence very scanty and not necessarily 
reliable; with the available data it is not easy to make a good estimate of the drag 
for an arbitrary bird, since there is a good deal of variation in body proportions over 
the size range. Second, and more serious, the body configuration of any individual 
will vary with the flight configuration, and we shall see that this can have an important 
effect on both drag and lift; it is difficult to apply any mathematical specification to 
the behaviour of body tilting since there is very little discussion of the problem in the 
literature. A third complication is the possible influence of the Reynolds number Re, 
but in the size range of avian flight this should not greatly influence the drag coeffi- 
cients; despite overestimates of the influence of certain parameters Greenewalt (1 975) 
has shown that variations in Re do not greatly alter our conclusions on power con- 
sumption. 
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Wing-tip distance = / 
VrT + Zb sin J@ cos y 

wing 

FIGURE 1. (a )  One complete wing-beat in forward flight, showing notation used in power cal- 
culations. Flight velocity V = Vi. The configuration of kinematic parameters is approximately 
consistent with a pigeon flying at 9 m sL1 (viz. y z 75", @ % 90", 7 z $). The unit vectors j 
(not shown) = - i  A k and k lie in the stroke plane. (71) Front view of bird in stroke plane 
(j, k ) .  Angular position of wing relative to horizontal (mid-stroke) is given by O ( t ) .  

To simplify the effect of dimensional scaling, we assume that I Af, I is proportional 
to (body mass)%. Until more measurements are available we cannot predict the index 
any more accurately. From measurements on the pigeon, Pennycuick (1968) found 

Afp = -2 .85 x iO-3N*i (m2), (3) 

assuming that the body occupied the zero-lift configuration throughout. By including 
measurements from seven species and, like Pennycuick, assuming that the body is 
untilted, Tucker (1973) gives 

Afp = - 3.34 x iO-3M*i (m2), (4) 

somewhat greater than Pennycuick's estimate. It is reasonable to expect ( 4 )  to apply 
in fast forward flight, but in slow forward flight and hovering the body is tilted by 
angles of up to about 4 5 O .  An estimate of the effect of this can be made by assuming 
that the equivalent flat plate area for the drag component normal to the body is the 
same as the projected area of the body A,, with the drag parallel to the axis of the 
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body as in (4). Then if the body axis is inclined a t  an angle /3 to the forward direction 

where 

Measurements by the author on a pigeon of mass 0.37 kg give A,  = 0-027, compared 
with A, = 0.0017. Assuming that A,  scales as MQ, we calculate the scaling formula 

A,, = - i(A, c0s3p + A ,  sin3p) + k(A,  sinp - A, cos ,8) sinp cos p, (5) 

A, = 3.34 x 10-3MQ (m2). (6) 

A,  = 4-5 x 10-2MQ (m2). (7) 

It is unreasonable to claim this scaling on the basis of just one measurement, but as 
an indication of the order of magnitude of the lift obtained when the body is tilted 
it is valuable. 

The only measurements available for the drag of a tilted body are those of Csicsbky 
(1977), who used plaster models of the zebra finch in observed body configurations. 
He obtained the drag and lift as functions very similar in behaviour to (51, but with 
magnitude 3 or 4 of that suggested by (6)  and (7).  Some of the discrepancy might be 
explicable by better streamlining in the finch than the pigeon, but most is probably 
due to his use of models, the smooth surface of which cannot compare with the birds' 
feathers. We cannot expect these measurements to confirm the estimates of (6) and 
(7), but they do suggest that the form of the expression in (5) is appropriate. Csicdky 
gives figures which allow us to derive the following expression for Afp:  

A,, = [-i(l.142+7.141(p-p0)2.434)+ k(7.486(/3-/3,)1*405)]M*x (m2), (8) 

where Po = &r ( = 5"), p and Po being expressed in radians. 
Assuming that we accept either of the representations (5) [with (6) and (7)] or (8) 

for A,,, we must specify how p behaves, either as a function of the flight velocity or, 
and more sensibly, as a function of the stroke-plane angle y (angle of stroke plane to 
backwards direction - i).  In fast forward flight we expect to be small and y large, 
but the problem of relating them depends on the flexibility of the system of bones 
and muscles around the humeral joint. If the joint were totally inflexible we might 
suggest 

but such a relation would lead to abnormally high values of p in slow flight, where y 
is reduced more substantially than p is increased. Alternatively we might suggest 
that there is some value of p+ y beyond which the anatomy cannot stretch, so that, 
say 7 

(10) 

where p1 might lie between 35 and 80". While such a relation is quite feasible and 
agrees well with known behaviour, we can expect p1 to depend upon the species of 
bird involved, and to have a decisive effect upon flight style, so that a determined 
estimate for all species is not reasonable. Csicsbky quotes p1 = 55" for the zebra finch. 

We experiment with a number of forms of the relation between p and y together 
with different forms and magnitudes of Afp.  

The parasite drag and the weight are important forces acting on the bird, but we 
must also consider the reaction of the wing motions. These are not constant through 
the stroke and would lead to recoil of the body, but we assume that the animal is 

p = 80" - y ,  (9) 

p = Max (P1- Y 9 O ) ,  
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sufficiently massive for this to be neglected. The force on the body due to profile drag 
is small, but can be important a t  high velocity. The reaction of wing inertia is large 
during the downstroke, but its net effect is zero, so i t  can be ignored. 

We calculate the profile drag (and later the profile power and lift coefficients) by 
a method derived from that of Osborne (1951), Pennycuick (1968) and Weis-Fogh 
(1972). Pennycuick included induced drag in the profile-drag calculation and thus 
seriously overestimated the profile power at low speeds; Weis-Fogh was concerned 
with hovering alone. We need to estimate a zero-lift drag coefficient CDo for the wings; 
a value of 0.02 seems to be a good, if slightly large, estimate for bird wings; higher 
values are appropriate for insects. This coefficient represents the friction and form 
drags of the wing when producing zero lift; this formulation allows us to neglect the 
deformation of wing sections under aerodynamic load as a device to generate and 
retain wing circulation whose energy cost is included in the induced power. The 
reaction of the lift and induced drag forces is the momentum of the shed vortex sheet, 
which must be in equilibrium ui th  the other forces acting on the body. 

We define the origin of the coordinate axes as the initial position of the humera1 
joint (see figures 1 a, b for notation). The angular velocity of the wing can be taken as 
sinusoidal during the downstroke (Norberg 1975), so that the angular position is 
given for 0 < t < rT by 

(11) 
7rt 

rT’ 
8( t )  = -*$cos- 

and the angular velocity by 
774 7rt 

8 ( t )  = 4 - sin - 
rT rT 

The position X* of a point a t  radius 6 on the ~t: wing is given by 

X+ = Vti & bgj cos 8 - bck’ sin 8 ;  (13) 

the velocity of a wing section relative to  the air is 

with magnitude 
U+ = Pi - b@( ? j sin 8 + k’ cos O), 

U = ( V 2  + 2 Vb@(t) cos 8 cosy + b2C2b2)&. 

Fpr convenience we non-dimensionalize time with respect to the downstroke period 
divided by 7r, and velocity by the mean downstroke tip velocity times 471, writing 

f = nt/rT, v = 2VrT/b@. (161, (17 )  

F p r o +  = - &pcoC(lJCDo UUI, (18) 

The profile force per unit length on a wing section is 

so that the mean profile drag acting on the body, 

can be expressed as 
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T ,  

FIGURE 2.  Diagram of downstroke geometry, seen from the side (along the - J  direction). 
Humeral joint moves from HI t o  H ,  and wing tips from TI to T, approximately along the straight 
line path shown. The shed vortex ring occupies the plane A,A,  a t  the end of the downstroke; 
the oldest portion convects from A ,  to A,. The length A , A ,  is a fraction R' of the length T, T,; 
Yo is small, and we can assume that A,A,  and AIA,  are of equal length. 

I n  hovering flight = 0, and (20) may be evaluated to  give 

Dpro = + 0.605 'q q5 J1($q5) k', 

where J1 is a first-order Bessel function; in fast forward flight, as V + 00, (20) becomes 

where S is the total wing area 

The momentum I Q I and inclination Y of each elliptical vortex in the wake must 
be appropriate to  sustain and propel the bird for a single wing-stroke (for period T), 
and so must satisfy (see figure 3) 

IQl(i sinY + k cos Y) = T(Mgk-D,,, -Dpro); (24) 

from (24), IQI and YP can be found as functions of V and y .  
We now relate Y and y by considering the geometry of the wing-stroke and the 

shed vortex. Equation (24) then allows solution for all variables as functions of V .  
The geometry is shown diagrammatically in figure 2; the humeral joint moves from 
Hl to H,, while the wing tips follow an (approximately) elliptical arc from Tl to  T,. 
The trailing vorticity is assumed to  roll up into a geometrically similar elliptic loop, 
reduced in dimension by a factor R' (generally R' < 1) ;  the ends of the axis of this 
loop parallel to the forward motion are A, and A,; in fast forward flight this is the 
major axis, but in slow flight and hovering it can be the minor axis. During the stroke 
the oldest portion of the vortex loop (the end A,) is convected downwards through 
the combined effects of its own vorticity, the bound vorticity on the wings, and the 
previous wake elements; convection is approximately normal to  the free stream, 
and at the completion of the downstroke the ring lies in the plane AIA,.  The 
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convection velocity is a complicated function of many factors and is not constant 
in space or time; we assume that it can be approximated by the self-induced velocity 
of the circular ring osculating to the ellipse at A,;  this is an underestimate of the 
magnitude of the convection and results in underestimates of y in slow flight. 

The geometry shown in figure 2 enables calculation of the vortex-ring proportions; 
the size R' depends on the wing circulation and is discussed later. Evidently Yl is 
given by - 

b sin $q5 sin y 
bsin$#cosy+$VTT' 

tanYl(y,  V )  = 

Since the convection velocity Us, is small compared with V ,  Yo will be small in fast 
forward flight. We can take the length 2b, of the transverse axis of the elliptic vortex 
ring to be ZbR', and the length 2a, of the longitudinal axis to be R' times the length 
Tl T,, so that, 

b sin $4 cosy + + VTT 
a, = R' 

cos Yl 

The circulation K of the vortex ring is defined by the ring momentum and area; 
the momentum IQI is known from the balance of forces on the animal (24), and the 
area is nu, b,. Therefore 

( 2 7 )  

Now, suppose that the vortex has core radius R,(a,b,)h, where R, is a constant, 
again depending on the wing circulation. The end A, of the vortex ring is assumed to  
convect with the velocity of a circular ring of radius btla,, which we know [appendix 

K = I Q (7, V )  1 /pnanbn. 

(A 29)] t o  be given by 

We can solve the system outlined above for y( V )  by satisfying the equation 

Y = Y,  - Yo, (29) 

tanY, = 4&?&,,/an. ( 3 0 )  

where Y(y, V )  is given by ( 2 4 ) ,  Yl(y, V )  by ( 2 5 )  and Yo by 

By substitution in the appropriate equation we obtain all variables as functions of V .  
It remains to  find the size R' and core radius R, of the vortex ring. We equate the 

momentum of the vortex ring to that of the vortex sheet from which i t  was formed, 
which can be deduced from the wing circulation distribution r(g). The technique 
used to estimate R' is the same as that used in I, $ 5  for hovering flight. The area of 
the portion of the surface Tl Hl H,T, (figure 2 )  mapped out by points a t  radius < on 
the wings can be written approximately as 

A (c, $) = b2c2q5 + 2 Vb7T[JO( $4). ( 3 1 )  

As in I, $ 5 ,  only the portion of the sheet for which I?'(<) < 0 (say 5 > c,) can con- 
tribute to weight support. Equality of momentum between the ring and this portion 
of the sheet gives 

-Ic: I?'([) A(c ,  q5)  dc = 7rR'2bI'([n) ( ~ V T T  + b sin 44). ( 3 2 )  
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As in I, $5, the other portion of the sheet has small impulse and energy, and its con- 
tributions to the force balance and energy budget are neglected. Writing 

and 

we obtain for R' the equation 

This agrees exactly with the hovering case when 4 = n (V = 0); for other 4 when 
V = 0 the prediction for R' does not differ greatly. Typically R' lies in the range 
0.6-0.8 for likely circulation distributions. 

In hovering we can reasonably expect that I?([) cc <C(c) approximately; the above 
analysis requires r(5) to be independent of t  during the stroke, which is more likely 
to be satisfied when q5 is large and circulation can be generated by the 'fling ' effect. 
In forward flight we might expect r(5) cc ( 1  + rl 5)  C([) for some constant rl depending 
upon V .  Hummel & Mollenstadt (1977) have performed a detailed lifting-surface 
analysis on the downstroke of a sparrow, for which ample kinematic data exist 
(Bilo 1971, 1972), and obtained a relationship of this kind. They did not actually 
quote r(<), but it may be deduced from other information given. The appropriate 
values of I, and Il are respectively 0.79 and 0.64, compared with values of in and 3 
for elliptic loading (r(5) cc (1 - &'2)*). 

The non-dimensional core radius R, can be obtained only from consideration of the 
energy of the vortex sheet, a difficult problem which w0 do not tackle. It appears 
only as its logarithm, so provided that R, is non-zero it cannot affect the problem 
greatly; a value of 0-171 is known for elliptically loaded rigid wings, and we use this 
value, together with 0.1 and 0.225, as being likely to span the appropriate range into 
which R, might fall; any variation in R, with V is assumed to be small. 

4. Power consumption 
We have now specified the geometry of the downstroke and of the vortex ring 

uniquely subject to certain assumptions concerning the mechanism by which the 
ring is generated, for any velocity V ,  and are in a position to calculate the rate of 
working required for sustained steady flight at  this velocity. The parasite power is 
given by 

Ppar  = -Dpar .  Vi, (36) 

SO that P p a r  cc V 3  in fast flight. The profile power is obtained from the total rate of 
working against profile drag on each wing section. The force Fpro* per unit length on 
a section of either wing was given by (18)) and the velocity U* of the section by (14). 
P p r o  is calculated from the rate of working against profile drag: 
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The factor ,u is included to  take account of the work done during the upstroke to 
return the wing to the vertical; it is defined as 1 + ms/mp, where m, and rnp are respec- 
tively the masses of the muscles powering the upstroke and downstroke; typically 
it is about 1.1.  The correction is small because the wing is flexed during the upstroke 
to minimize aerodynamic resistance. 

With the non-dimensionalization of (16) and (17 ) )  we can write 

In  hovering, with 0 = [sini, 
P p r o  = 0.133 ppb3f?CDo $3/r2T3, 

which agrees with equation (19) of Weis-Fogh (1973). I n  fast forward flight Ppr0 is 
proportional to V3, being Y times the expression (23). 

The remaining power component is the induced power, the rate of passing mecha- 
nical work into the vortex wake to generate momentum which supports and propels 
the bird. The work done in generating wake kinetic energy can be divided into two 
components: one is the self-energy of each newly generated ring, the other the inter- 
active or mutual energy between the new ring and each of the existing rings in the 
wake. The calculation is similar in many respects to that given in detail for the 
hovering case in I, 54. 

We must specify the major and minor semi-axes a, and b, of each ring by 

a, = max (ao, bo),  b, = min (ao, bo),  (40) 

(41) 

and then the eccentricity e is given by 

e2 = 1 - b:/a2,. 

The calculation of the kinetic energy of an elliptic vortex ring does not appear to 
have been treated in the literature, and was given particular attention. An algorithm 
for the calculation of kinetic energy for any smooth closed vortex loop is discussed 
in the appendix. We quote the formula for the self-energy E, of the ring defined above 
from (A 32): 

where 
E, = 4pK2arEs, (42) 

- ( l - i e 2 ) K ( e ) } .  (43) 

K and E are complete elliptic integrals of the first and second kinds. It is assumed in 
(43) that  vorticity is evenly distributed through the vortex core (2 = B). 

To find the mutual contribution Em to the kinetic energy we first find the separa- 
tions zao and Ea0 between adjacent members of the chain (figures 3 and 4). In  the 
hovering case the rings were assumed to be circular and coaxial, and it was possible 
to find 5 exactly for the large family of rings present; d was then zero. In  the general 
situation we are discussing here there is no axial symmetry and we cannot predict 
the interactions of any pair of rings; it is necessary to estimate the velocity of a single 
element in the chain, and to assume that each ring persists in shape and size a t  least 
as long as it can contribute to the induced power. It can be shown (appendix) that an 
elliptic ring travels with approximately the same velocity as a circular ring of the 
same impulse and area provided that the eccentricity is not too great (ez 5 0.3)) and 
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L Initial position 
of ring i - 2  

assumed ring convection ‘ Q  
(vortex ring momentum) 

FIUURE 3. Diagrammatic cross-section of the wake of a bird in fast forward flight, relative to 
still air. Continuous thick lines indicate the positions of vortex rings i, i- 1 and i - 2 a t  the 
instant when ring i is fully generated ; dashed thick lines indicate initial positions of the rings. 
Note that the downward slope of the wake is caused by ring convection, and that the momentum 
of each ring (which is normal to the plane of the ring) is not parallel to the wake itself (unless 
V = 0), so that any form of actuator disk or momentum jet description for this flow would not 
be satisfactory. 

FIGURE 4. Notation for calculation of interactive kinetic energy of two adjacent wake elements 
in forward flight wake. Lengths Fkc, and &, are increased in proportion for other pairs of vortex 
loops. X, = (ao 00s $,, b,  cos 0 ) ;  X, = (u,(?l+cos @2), b,  sin $,, -AuO). 

further that the rate of deformation will be slow. We estimate the self-convective 
velocity V, of a ring from the formula for the equivalent circular ring (A 33)) and 
neglect any motion induced by other rings in the chain. The neglect of the effect of 
the remainder of the wake is justified by noting that in forward flight of birds indi- 
vidual vortex elements are well spaced, so that the dominant convection velocity on 
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any ring is its own self-convection. This is 

thus the separations between rings are 
- 
d = (VT/a,)  cos Y (45) 

and 5, = (VsinY++)T/a, .  (46) 

These results can be only an estimate of the true spacing for a number of reasons. 
They assume that all rings in the wake persist, which is not fully acceptable even for 
an isolated elliptic ring unless the eccentricity is small; moreover in this application 
each ring is in a very complicated velocity field. Accurate results for the induced 
power in hovering are available in I, $7,  and are close to the predictions of this cal- 
culation; as the forward velocity increases the mutual induced power falls off very 
rapidly, and is negligible when the eccentricity is large enough to make ring distortion 
a real problem. The difficulties of calculating the ring shape and spacing in the far 
field exactly a t  all times are insuperable, and their neglect is justified by the avail- 
ability of an exact solution when V is zero, and the insignificance of the mutual con- 
tribution to induced power when V becomes large. 

To calculate the interactive energy of two rings (1 and 2) we use the formula 

as in I, $4,  equation (44). The notation is shown in figure 4. I n  particular 

and 

so that 

X, = (a, cos $1, b, sin $1, 0) (48) 

(49) 

(50) 

X, = (a,(d + cos $,), b, sin - Ka,), 

EA2 = p/c” (at sin $l sin $2 + b$ cos cos $2) d$ld$2 
477 o [a: (cos $l - cos $2 - + b,2 (sin -sin $2) +a: h2]1 * 

The total mutual energy is the sum of the contributions from interaction with each 
other member of the chain: 

where 
E m = I  2~ K U  ,Ern, (51) 

ar n = l  
and f z  can be derived from Ek2  as 

fz is small for large n compared with gs and f:, and rings in the far field make no 
significant contribution to the mutual energy. I n  fast forward flight the sum in (52) 
converges within about five terms. I n  slow flight more terms are needed. 

The induced power Pi is calculated as a function of V from the total energy incre- 
ment [sum of (42) and (51)] divided by the stroke period; thus 

= $p~~a , (E ,  + E m ) / T .  (54) 
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The total flight power P( V )  is the sum of the parasite, profile and induced components 
[(36), (38) and (54)]: 

( 5 5 )  

This equation enables us to  calculate P( V )  as a function of V for any realistic com- 
bination of kinematic parameters q5) T and T. 

I n  hovering the parasite power is negligible and the profile power small; both 
increase approximately as V3, and are dominant in fast forward flight. The induced 
power is large in hovering, and falls rapidly as V increases, finally decaying approxi- 
mately as V7-l. The P ( V )  curve is thus U-shaped, with a definite speed V, at which 
power consumption is a minimum. The behaviour of this curve as kinematic and 
morphologic parameters vary is one of the main factors determining a bird’s flight 
style, since i t  must always be concerned to reduce power consumption a t  its chosen 
flight speed. 

5. Lift coefficient 
The main advantage of the vortex theory is the absence of any assumptions re- 

garding the magnitudes of lift and induced drag coefficients, which have in varying 
ways been present in most former avian power calculations. It would be hard, if not 
(in our present state of knowledge) impossible, to derive these coefficients accurately 
for a bird’s reciprocating wing under all possible conditions. They of course vary both 
across the wing-span and during the stroke in an unpredictable way; only if the 
flow could be assumed to be sufficiently steady would a lifting-line or lifting-surface 
theory give their values instantaneously. An analysis of this kind on the sparrow in 
fast forward flight (9  m/s) has been attempted by Hummel & Mollenstadt (1977) a t  
the instant when the wings are horizontal. Their results show that (passing outwards 
along the wing) C, rises slightly over the inner portion to a maximum of 0.7 a t  the 
midpoint of the wing, and then falls rapidly to zero at  the wing tip; the mean C, is 
about 0.3. They suggest that  a t  their Reynolds number of lo4 the value C, = 0.7 is 
near to  the maximum that the wing can sustain, alt,hough perhaps this is over- 
cautious, and can be meaningful only when the variation of CL with time is known. 
These figures imply that a quasi-steady analysis may be satisfactory a t  high forward 
velocities, but not a t  low velocities or in hovering, when the lift coefficients required 
would rise well above a reasonable maximum of 1.5 or 2 consistent with the steady- 
state theory. Observations of the pied flycatcher Ficedula hypoleuca and associated 
calculations by Norberg (1975) give a disturbingly high mean C, of 5-3 in hovering; 
although we recalculate the figure as 4.1 this is still much larger than any value 
consistent with steady-state wing theory. Norberg (1976a) b )  estimates CL to  be 
between 3.1 and 6.4 in hovering and about 1.5 in forward flight a t  2-35 m/s for the 
long-eared bat Plecotus auritus (body mass 9 x kg), again suggesting that un- 
steady effects are responsible for lift. 

By avoiding force coefficients (except for the simpler wing profile drag) we are less 
bound by the steady-state assumptions and can give a more reliable estimate of 
flight power. We are no nearer to  investigating the means by which such high levels 
of circulation can be attained on the wing. To this outstanding problem in any study 
of animal flight, the few existing clues are as follows. There are a number of modifica- 
tions to the bird’s wing which can probably assist generation of high levels of lift in 



Vortex theory of animal Jtight. Part 2 747 

flight (leading-edge slots, primary-feather twisting and separation, chordwise de- 
formation under aerodynamic load, elastic bending of feathers) which have been 
widely studied (Oehme & Kitzler 1974, 1975a; Nachtigall & Kempf 1971; Pennycuick 
& Lock 1976). The main enigma is the function of primary-feather separation; this 
occurs in many species under particularly exacting flight conditions, and the smallest 
passerine birds use it at all times. It certainly has a valuable aerodynamic effect, but 
the exact mechanism has not been discovered; presumably lift enhancement, boun- 
dary-layer control and induced-drag reduction are all relevant. 

Some recent research into the use of ' sails ' a t  the wing tips of aircraft (Spillman 1979) 
has shown that the induced drag can be significantly reduced, without an increase in 
the other drag components, and therefore with some saving in flight power. Geo- 
metrically these sails are similar to  the separated primary feathers found in many 
small birds and in larger birds which use static soaring (e.g. birds of prey) or with 
disproportionately small wings (e.g. gallinaceous birds); although the research applies 
to the rigid wing of aircraft it is likely that the same (or a t  least a related) mechanism 
operates on a bird's wing in flapping flight, and there can be little doubt that this is 
the reason for feather separation in soaring birds. 

The sails have the effect of causing the wing-tip vortices to spiral outwards so that 
the final separation is greater than if the wing were unmodified. If the same effect 
occurs in avian flapping flight the vortex-ring size R' would be increased. We know 
that a larger R' implies lower induced power, since the vortex ring must have the 
same momentum (assuming that separation does not materially increase profile drag) ; 
the momentum is proportional to  K R ' ~ ,  from (27), so that  the circulation K can be 
reduced. From (42) we see that the self-energy of each vortex ring is proportional to 
K ~ R ' ,  so that the self-energy contribution to the induced power is approximately 
proportional to R'-3; this increase in R' gives a small increase in mutual energy, but 
the overall effect is for the induced power to be reduced. 

I n  view of this possible effect of separation it may be that we are using unrealistic- 
ally low values of R' in some cases. Until more information on the details of the 
mechanism for a bird's wing is available we cannot do better than use the values cal- 
culated in $3;  we should be able to take account of separation either by modifying 
the form of r(c), or alternatively by introducing a suitable 'aerodynamic wing span', 
greater than 2b, across which circulation might be elliptic; this could synthesize the 
effect of separation by replacing the modified wing with the equivalent, larger, simple 
wing. 

A valuable discussion of the aerodynamic functions of a bird's wing, including 
consideration of such properties as through-wing suction, has been given by Vino- 
gradov (1951); this paper contains a good deal of interesting argument not available 
elsewhere. 

Another possible way for a bird to  obtain high lift and high wing circulation is by 
the Weis-Fogh clap-and-fling mechanism (Lighthill 1973)) which may be important 
to pigeons and doves for instance, or other as yet undiscovered effects of the same 
kind. While we cannot specify the way in which high values of circulation are achieved, 
we can recall that since the birds can fly, somehow they are practicable. The vortex 
theory will not be greatly affected by unsteady effects provided that we assume that 
they are consistent with the rapid roll-up of the vortex sheet into an elliptic vortex 
loop. 
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To estimate the lift coefficients required we give below a simple theory for their 

The vertical component Lh of the sectional lift force on the & wing is given by 
calculation, similar to the profile-power calculation in 5 4. 

L* = !jpcoC(c)CL UUh A t k  . k, ( 5 6 )  

assuming a mean lift coefficient C,. The total lift must balance the weight of the bird, 
SO that  allowing for the vertical components of parasite and profile drags, we have 

Any lift derived from induced drag is neglected on the right-hand side of (57). From 
these equations we may determine C,. I n  hovering, profile drag is negligible, and then 

CL = 6.62 MgTT2/pb2S$2 COSY (58) 

which is the maximum C, needed in steady flight; higher values are required in take- 
off. We relate the hovering C, to  the feathering parameter f (defined in I, equation 
( 1 6 )  as MgT2/2n3pb4) and the aspect ratio A,  (wing span squared divided by total 
wing area, i.e. 4 b 2 / S )  by the formula 

C, = I O ~ . ~ T ~ A , / @ C O S Y ,  ( 5 9 )  

so that birds with low f and low A, are more likely to overcome the aerodynamic 
constraints on lift generation in hovering. It was shown in I, $ 7 that low f also implies 
low hovering induced power; evidently a low feathering parameter (i.e. a high wing 
span and/or a low stroke period) is of great importance if the bird is to be able to 
hover or fly slowly. 

At  higher speeds C, decays approximately as 8 - 2 ;  i t  is small, and does not represent 
a significant constraint. We cannot deduce optimum morphologic conditions for fast 
flight on the basis of lift generation, but the magnitude of the hovering lift coefficient 
[(58) or ( 5 9 ) ]  indicates the importance of the constraint in hovering, slow flight and 
take-off. From it we can deduce whether hovering is a t  all possible, or whether i t  is 
possible only with unsteady lift generation. 

With $ = 100" and y = 30" (the configuration observed by Norberg), we evaluate 
(58) for the flycatcher to obtain C, = 4-1; with the same $ and y we can find further 
that  for the wren C, = 20-6, for the pigeon C, = 10.3, for the mallard C, = 11.9 and 
for the pheasant C, = 11.4. Of these birds, only the flycatcher is known to hover with 
such a small value of q5. The pigeon hovers occasionally with $ z 180", and then 
C, = 3.2; it probably takes advantage of the clap-and-fling mechanism. Some similar 
form of lift enhancement is probably being used by the flycatcher. 

6. Applications 
We consider in this section the behaviour of the model and the influence of various 

of the parameters included in it. A detailed discussion of the biological findings will 
be found in Rayner (1979b, $4). That section includes discussion of the influence of 
morphologic and kinematic parameters on flight style and power consumption for a 
number of species. 

To illustrate the discussion in the next sections we perform calculations on data 
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Body mass, M (kg) 
Wing semi-span, b (m) 
Wing area, 8 (ma) 
Pectoralis major relative mass, m,/M 
Muscle ratio, p 
Stroke Period, T / s  
Feathering parameter, f 
Aspect ratio, A,. 
Disc loading,' N,JN m-a 

0.012 
0.115 
0.0090 
0.16* 
1.10* 
0.07 
0.044 
5.9 
2.8 

TABLE I. Morphologic data for pied flycatcher Ficedula hypoleuca, 
from Norberg (1975) (*  from Greenewalt 1962). 

for the pied flycatcher. The appropriate morphologic data are given in table 1. This 
bird is selected because it is the only species for which a complete set of observations 
of morphologic and kinematic parameters is available (Norberg 1975), albeit only 
for hovering. Very similar conclusions as to the influence of stroke parameters, or of 
drag representation, on flight power are made for other species and there is no danger 
that selecting a single bird in this way will distort our results. 

The calculations were carried out using the IBM-370 a t  Cambridge; because of 
the complexity of the model they were costly in computing time and the number of 
applications had to be restricted. Mks units are used throughout. 

All of the calculations rely heavily on data obtained (mainly in the field) from real 
birds. For many reasons we must expect the errors in the measurements, and further 
the errors we introduce in assuming that a handful of specific measurements may 
apply t o  a species as a whole, to be sizeable. As data relevant to avian flight are 
scanty we cannot attempt to make any estimate of the magnitude of the error. We 
may be reassured, however, by noting that many of our conclusions refer to deductions 
relative to two parameters or to two species, so that even if the magnitude of the 
power consumption is unreliable we may make valuable conclusions. Moreover, as 
in many biological problems, maxima and minima are shallow, so that (for instance) 
a moderate change in flight velocity will result in a small change in power. We may 
therefore expect the various deductions we make to be insensitive to inaccuracies in 
data. 

The main feature of the model which we discuss here is the representation of the 
parasite drag, which was explained fully in 5 3; the effect of varying this is given in 
3 8. We must also consider the influence of the magnitude of the profile-drag coegcient 
Coo, the size R' and core radius €2, of each vortex ring, and of the ring convection 
velocity estimated by (28). We also give a very brief discussion of the influence of 
kinematic and morphologic parameters. 

7. The power curve 
It has already been stated that as the flight velocity increases, the induced power 

drops, and parasite and profile powers rise, the neb result being a U-shaped curve 
of total aerodynamic power against velocity. A sample power curve for the flycatcher 
is shown in figure 5. It is clear that this curve defines two characteristic velocities: 
Ji,, a t  which the total power P( V )  is minimized [(V,) = Po], and K, a t  which the cost 
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FIGURE 5. Power curves for pied flycatcher Picedula hypoleuca ( M  = 0.012 kg); with @ = 120°, 
7 = 8, standard drag representation (see §8), R, = 0-171;  1, = 0.896, I ,  = 0.808. Dashed 
portions of the curves a t  low velocity are interpolations from the exact hovering induced power 
calculated in I. Note the high parasitic power and associated low minimum cost speed, but 
almost constant cost of transport a t  high speeds. 

0 4 6 8 
Flight velocity, V (m s-') 

FIGURE 6. Comparison of effect on power consumption of different drag representations, for 
flycatcher. Apart from drag representation the parameters are as in figure 5. Curve 1 ,  standard 
body drag, Ab = 0.045 M8, ,O = 80"- y ;  2, standard body drag, body untilted (i.e. /3 = 0); 
3, standard body drag, Ab = 0.01 M8, p = 80"- y ;  5,  standard body drag, A,  = 0.045 M8, 
/3 = 45" - y ; 5,  Csicshky drag, = 55" - y ; 6, double Csicshky drag, p = 55' - y. 
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FIGURE 7 .  Effect on power consumption of varying kinematic parameters, for flycatcher; 
other parameters and features as in figure 5. Curves: 1, 4 = 180", T = $; 2, $ = 150", 7 = '. 7 ,  

3, $ = 120°, 7 = $; 4, $ = go", 7 = $ (not shown for small V ) ;  5, $ = 120°, 7 =$; 6, $ = 120°, 
7 = +. 

of transport C ( V )  is minimized [C(V,) = CJ; V, is greater than V,. The minimum is 
very shallow and there is little increase in power or cost with a moderate change in 
velocity. The hovering induced power is calculated from the results of I [equation 
( S O ) ]  since this calculation is more accurate a t  low speeds than the limiting form of 
the forward-flight model described in this chapter; where appropriate the low-speed 
values of the power are interpolated by eye, and are indicated in figure 5 by dashed 
lines. 

The cost of transport referred to above, defined by 

C( V )  = P (  V ) / M g V ,  (60) 

measures the aerodynamic work done in transporting a unit weight through unit 
distance; it is therefore a non-dimensional quantity. The bird will choose to fly a t  
the minimum cost speed V, if i t  must cover a great distance, since a t  this speed the 
total energy required is least although the power required is above the minimum. 
I n  other conditions, particularly for short flights, the bird is more likely to  select the 
minimum power speed V,. The curve of power consumpt,ion against velocity for a 
bird in flapping flight has much in common with the glide polar for a gliding bird or 
aircraft; there are the same characteristic speeds, and the possibility of stall a t  some 
low forward velocity around the minimum power speed if the wings cannot produce 
sufficient lift to keep the bird aloft. The extra relative air speed due to flapping pushes 
the stall velocity lower than in gliding, and some birds are capable of hovering; some 
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species can hover for short periods only, and we deduce that in these cases meta- 
bolic power is the limiting factor. 

By altering the few morphologic parameters under its control a gliding bird can 
obtain access to the envelope of a family of glide polars, various of which might be 
more favourable a t  different glide speeds or descent angles; Lighthill (1974) has shown 
that a gliding bird should spread its wings a t  lower velocities. By varying the kinematic 
parameters with only minor changes to the morphologic parameters a flapping bird 
can reach a similar envelope of a family of power curves. It will choose the most 
advantageous configuration within the limits of its aerodynamic and structural 
capabilities. (We have seen in $ 5 how lift generation is an important consideration.) 
We consider the benefit to be gained from varying the kinematic and morphologic 
parameters in 9 10 and in greater detail in Rayner (19798, 94). 

While the two speeds 6 and V, characterize the power curves, they are not neces- 
sarily the speeds which minimize the cost to the fuel reserves per unit time or per unit 
distance. V, will vary if there is a head or tail wind, since this calculation is concerned 
with flight relative to still air, and the cost of transport is useful only when considered 
as energy per unit ground distance; in addition V, will increase if we include a fixed 
basal metabolism to account for energy consumed by internal body functions inde- 
pendent of flight. 

The stroke-plane angle y predicted by the model is generally too small in hovering 
and slow flight, especially for birds with low f. Predictions for the flycatcher in hovering 
are too small by up to a factor of approximately 2-5; as V increases y rises and reaches 
realistic values a t  around the minimum cost speed. The discrepancy is caused by the 
inaccuracy of the formula (28) for the convective velocity Us, of the vortex ring; this 
formula neglects the induced velocity due to vorticity elsewhere in the flow field, 
and therefore underestimates I&. When f is small older wake elements are close to 
the bird in forward flight, so the underestimate is greater. In  fast forward flight the 
predicted y is generally in the range 60-75", which is wholly realistic. The variation 
of y (  V )  with such factors as the drag representation considered in $ $ 3  and 8 is slight. 

Although y ( V )  is inaccurate a t  low speeds, the inaccuracy does not materially 
affect the total power consumption calculated. By modifying the form of Us, it can 
be shown that the power consumption is very insensitive to  the values of y ,  i.e. that  
the zeros of (29) are very shallow and are not greatly affected by substantial changes 
in y ( V ) ,  consistent with the representation of convection. I n  view of the extreme 
difficulty in expressing Us, exactly a t  low speeds and the insensitivity of total power 
to its value we neglect this problem. 

8. Drag representation 
We have seen in $ 3 that  there are a number of different ways of representing body 

parasitic drag. The effect of these on the power is shown in figure 6 for the flycatcher 
with I$ = 120". Similar effects are found for other species. 

The 'standard' body drag given by (5)-(7) with ,8 = 80" - y gives the greatest 
power consumption, substantially greater than other alternatives a t  medium speeds 
(curve 1 ) .  It has the interesting property that for a broad range of speeds P ( V )  is 
proportional to V ,  so that the cost of transport is constant and minimum. This is 
true to some extent for most species; while it may be a useful adaptation allowing 
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minimum cost to be reached a t  quite high speed, it is more likely to be coincidental 
since the presence of a. tail wind would dramatically reduce the benefit. It is possible 
that the value ascribed to A ,  in (7) is remarkably high; however, reducing this by a 
factor of 4 does not greatly alter the total power (curve 3), so the high A ,  need not 
be of great disadvantage to the bird. 

Relaxing the relation between p and y to p = 45" - y allows a much reduced Po 
and C,, with a valuable increase in V, (curve 4); perhaps this is a more realistic con- 
figuration for many birds than curve 1. If the body were to remain untilted a t  all 
speeds (/3 = 0;  curve 2 )  Po and Cl would be low; the penalty of a low V, is not significant 
when the cost is so small, but it is unlikely that many birds can take advantage of this 
strategy. 

Finally, we see that the representation of Csicsbky, given in (8) and (9) with 
p = 55" - y (curve 5 ) ,  has, as expected, very much lower power consumption a t  high 
speeds than any of the other forms. Doubling the magnitude of each of the Csicsbky 
drag components gives a more realistic estimate (curve 6) which is comparable with 
the other drag representations. 

The profile drag coefficient C,, was tentatively assigned the value 0.02 in $ 3 .  
Varying this has a largely predictable, and generally insignificant, effect. With a 
large increase in C,, to 0.04, there is a small rise in Po and C,, a slight fall in V, and a 
rise in G; the minima of P and C both become more shallow. 

It is difficult to select the optimum drag representation, especially as this probably 
varies widely between species. We use the 'standard) form of (5)-(7), with /3 = 80" - y 
and with C,, = 0.02. This may lead to a slight overestimate of power at  all velocities, 
but it is perhaps better to be pessimistic. The relative effects of varying the kinematic 
parameters are not affected by the drag representation used. 

9. Tolerance to features of the model 
In  the formulation of the model there was a number of features of a rather specific 

nature which had to be left undecided, since the use of more accurate representations 
would have required an unrealistic amount of calculation. As was stated in $3, the 
ring convection velocity Us, could be varied with only a small ( z 1%) change in the 
total power; we can therefore use (28) with reasonable confidence, despite the asso- 
ciated underestimate of y a t  low speeds. 

We must also consider varying the wing-circulation constants I, and 11, and thus the 
vortex-ring size (but not shape) and the vortex-ring core radius R,; I, and Il are 
related to the circulation I?([) by (33) and (34). If the loading is elliptic, i.e. if 

then I, = in- and Il = $; it is proportional to span times wing chord r(6) IX @(c), 
I, = 0.896 and Il = 0.808. The circulation distribution found by Hummel & Mollen- 
stadt (1977) leads to the values 0.79 and 0.64, so that we can reasonably expect I, to 
lie in the range 0.70-0.90 and Il to lie in the range 0-55-0.85. All other variables being 
unchanged, we find that the range of ring sizes specified by this spread of circulation 
constants leads to insignificant changes in total power consumption in forward flight, 
and a range of variation in induced power in hovering of a t  most, f 10% [see I, 
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equation (SO)]. There is no loss of accuracy in forward flight if the values associated 
with I?({) a {C({) are selected, i.e. I, = 0.896 and Il = 0.808. 

There was also some doubt about the value which should be assigned to the ring 
core radius R,. It is possible that R, should depend on the forward velocity and kine- 
matic parameters. The dependence of U,, and the kinetic energy on R, is logarithmic, 
so cny effects of varying R, within the range for which the ring may still be considered 
to have a finite small core, i.e. for which R$ < 1 and R, + 0,  will be small. We choose 
a mean value of 0-171, associated with elliptic loading of .a rigid wing, and consider 
variations within the range 0-1-0.225. The effect of this range on Po and Cl is small, 
being & 10% a t  most. This range spans the values R, is likely to  take: if anything it 
will lie towards the upper end (R, z 0*2), since the circulation distribution is likely 
to be less efficient than the optimum elliptic form. 

It is difficult to select a representative combination of parameters and definitions 
which is equally realistic in all possible conditions. On the basis of the arguments 
given above we choose the 'standard' form of drag given by (5)-(7), with p = 80" - y ,  
R, = 0-171, I, = 0.896 and Il = 0.808, and with the convection velocity Us, given by 
(28). We use this combination in the investigation of flight style described in $10 
and in Rayner (19793, $04 and 5). 

10. Kinematic parameters and flight style 
We are now in a position to make the most important deductions from the model: 

those concerning the flight style dictated by a choice of kinematic parameters. The 
morphologic parameters M ,  b, c, and S are assumed to  remain fixed a t  all speeds; 
this is equivalent to stating that the wings do not flex in any way at higher speeds, 
but have the same planform throughout the downstroke a t  all velocities. We assume 
that the stroke period T is likely to be constant for any individual; the stroke-plane 
angle y is determined by the momentum balance in the model, and in any case does 
not affect power consumption. The only parameters which we are able to  vary are 
therefore the stroke amplitude q5 and downstroke ratio r. 

The requirements predicted by the model on q5 and r are clear (figure 7). I n  hovering, 
induced power dominates and I, equation (80), shows that r is largely irrelevant, but 
that  a large value of q5 is beneficial; a large q5 also lowers the lift coefficient required, 
so it is clearly important. I n  fast forward flight profile and parasitic powers domiante; 
q5 can be small and r large, as far as is consistent with lift generation. Many large birds 
are able to adjust to the limit q5 + 0 and r --f 1, which represents gliding, 'power' 
consumption is then measured by the rate of height loss. To glide efficiently a bird 
requires a high aspect ratio and low disk loading, since this reduces power consumption 
in steady level flight. 

We can see from figure 7 that  somewhere around the minimum power speed V, the 
optimum values of q5 and r change rapidly; this corresponds to the transition from 
slow to fast. forward flight, and agrees well with observations of the swift (Oehme 
1968) and the gull (Tucker 1972), in which the flight style was found to change mark- 
edly between the two modes of flight. Although figure 7 illustrates the effect of 
varying the kinematic parameters for the flycatcher only, the conclusions are valid 
for all species since similar graphs are observed for other birds. There is always the 
same preference for a high q5 in slow flight and a low q5 in fast flight, with a high r 
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throughout if power reduction is to be the main criterion for the choice of flight style. 
I n  slow flight lift, generation can be critical ( $ 5 ) )  and this strategy will also ensure 
that the lowest lift coefficients are needed, and hence that the aerodynamic demands 
on the wing are less exacting. 

It is also of great interest to consider the interrelation between a bird’s life style 
(ecology and habitat, for example), its power consumption and its morphology. As we 
should expect, these factors have a considerable influence on one another, for the 
shape of the power curve reflects the morphological characteristics, and in its turn 
dictates the optimum flight style. We discuss this topic a t  greater length in Rayner 
(1979 b ) .  

11. Conclusions 
(i) A theory is given by which the wake of a bird in steady level forward flight is 

modelled as a chain of elliptic vortex rings. This allows calculation of power consump- 
tion and of mean lift coefficients. 

(ii) Existing theories place too much reliance upon force calculation from lift and 
drag coefficients. Lift coefficients obtained from measurements of birds and bats in 
slow flight are too high to be consistent with steady-state aerodynamics. No unsteady 
theory is available to describe avian flight, but the analysis in terms of wake vorticity 
circumvents the use of lift and induced drag coefficients. 

(iii) For the purposes of this theory a bird may be characterized by four morpho- 
logic parameters, viz. the mass, wing-span, wing chord and muscle ratio, together 
with four kinematic parameters, viz. the stroke period, downstroke ratio, stroke 
amplitude and stroke-plane angle. 

(iv) The wake consists of a chain of elliptic vortex rings, each planar and of small 
core radius. Each downstroke generates a single ring; the dimensions of the ring are 
determined by the kinematics of the downstroke and by the wing circulation distri- 
bution, The forces on the bird (weight plus sum of parasitic and profile drags) must 
be balanced by the mean rate of increase of wake momentum. The bird’s equation 
of motion allows us to  determine the geometry of the downstroke and the circulation 
of the vortex ring. 

(v) The upstroke is aerodynamically very lightly loaded and does little or no 
useful work. It therefore leaves no trailing vorticity. We can assume that the vortex 
elements shed by successive downstrokes are discrete from each other. 

(vi) Various representations of parasite drag, depending upon the body configura- 
tion and the degree of flexibility around the humeral joint, do not have a significant 
effect on power consumption. 

(vii) The power consumed in forward flight is calculated as the rate of working 
against parasite and profile drags plus the rate of supply of kinetic energy to the 
wake; the three components are the parasite, profile and induced powers. The in- 
duced power dominates in slow flight, the parasite and profile powers in fast flight; 
the power against velocity curve is U-shaped. 

(viii) The theory given here can be extended to cover hovering, but the results are 
then less accurate because the aerodynamic interaction between wake elements is 
not considered. The previous paper discussed the hovering case exactly, and the 
results for the induced power in hovering can be quoted from there. I n  forward flight 
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the elements become separated and interaction is minimal; the induced power is 
small and moreover is dominated by the contribution from the newest ring; older 
rings further down the chain need not be considered. Equally, self-deformation of 
each wake element occurs significantly only in fast forward flight (when the eccentri- 
city is large), and its neglect can be justified by the small contribution the induced 
power then makes to the total power. 

(ix) The pattern of kinematic parameters that a bird may choose is described as 
flight style; this can vary with the flight mode. The range of kinematic parameters 
available is limited by the strength of the bones and muscles concerned, in addition 
to the velocity-dependent constraint of lift and thrust generation. The bird must 
select the parameters within these limits which minimize the rate of working; in 
slow flight this corresponds to a large stroke amplitude $, and in fast flight to as small 
a value of $ as possible, with as large a value of the downstroke ratio T as can be 
achieved. 

Appendix. Induced velocity and kinetic energy of vortex loops 
Many problems in unsteady aerodynamics require knowledge of the behaviour of 

various forms of vortex systems. In  particular, we often require the distribution of 
induced velocities due to a vortex loop, and the kinetic energy of that system. The 
kinetic energy is the work done in setting up the vorticity in otherwise undisturbed 
fluid. Unless the vortex loop is circular it will not persist undeformed; in this case 
the induced velocity and kinetic energy must be considered as instantaneous values. 
The expressions for the induced velocity and kinetic energy of a small-cored circular 
vortex are well known (e.g. Lamb 1932, art. 163). Widnall & Sullivan (1973) have 
considered the stability of the circular ring to radial sinusoidal perturbations; in the 
course of this work a method is given for the calculation of the self-induced velocity 
of a curved vortex line (see also Widnall, Bliss & Zalay 1971); we reformulate this 
calculation below. Saffman (1970) discusses the influence of viscosity on a circular 
vortex ring, giving a simple derivation of the energy of such a system. All of these 
calculations assume that the core radius is small and finite; Fraenkel (1970, 1972) 
has proved that the familiar expressions for velocity and energy are valid asymptotic- 
ally as the core shrinks, while Norbury (1973) has shown the existence of a family of 
rings with arbitrary core, whose other limit is Hill’s spherical vortex. 

We are concerned here with the calculation of the induced velocity at  a point on 
the vortex and the kinetic energy of a smooth closed vortex loop of circular cross- 
section everywhere small compared with the local radius of curvature. We consider 
the induced velocity first. 

Vorticity is distributed over a volume V with strength o(x), o being the flux of 
circulation per unit area. The induced velocity ui at x’ is given by the Biot-Savart 
law: 

(X’ - X)  A O ( X )  
d 3 X .  

Let the centre-line of the vortex loop be parameterized by the arc length s (0  < s < X); 
the local tangent vector is t(s) and other unit vectors are defined by n(s), parallel to 
d t l d s ,  and b(s) = t(s) A n(s) (see figure 8). The local radius of curvature is R(s) while 
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X(S) 

FIGURE 8. Co-ordinate system for a smooth vortex tube. 

the core radius is R,, which is constant and very much less than R(s) for all s. Then 
a point x within V may be parameterized by s, r and $) such that 

x = X(s)+rcos$n(s)+rsin#b(s), (A 2) 

where X(s) = x, + IOS t(s’) ds‘ (A 3) 

is a point on the centre-line of the vortex loop. The radius and azimuthal position on 
a cross-section of the loop are respectively r and $. 

For any non-singular function f(x), we can therefore change variables in the inte- 
gral off  over V ,  namely, 

since R, < R(s),  provided that lVfl = o(r-lIf1)) we can write 

where f represents a suitably defined average value of f over the cross-section of the 
ring a t  s. Now in the case of (A I ) )  w ( x )  = W ( T )  t ( s )  and the circulation K is given by 

With the change of variable in (A 4) and (A 5 )  we can rewrite (A 1 )  as 

(X’ - x(S)) A t ( S )  
ds, 
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provided that x‘ 6 V ,  and neglecting terms O(R,/R)2. The evaluation of the induced 
velocity field far from the core of the vortex is achieved simply by calculation of 
(A 7); if greater accuracy is required the exact formula (A 5) may be used. 

If x’ is in V ,  then the integral (A 5) is essentially singular; it may be reduced to  a 
line integral as in (A 7) away from the singularity. Without loss of generality, we 
define the origin of s to consider the velocity induced at X,. Then 

The cut-off length L is chosen to make the second integral as small as possible, so that 
ui(X,) is given approximately by the first, which may be evaluated either exactly 
or numerically, and which need not concern us further. V, is the section of the vortex 
for which Is1 < L. 

Widnall & Sullivan (1973) have used asymptotic expansions to find the value of 
the second integral. As a result of evaluation of (A 8) they find the expression 

(A 9) 
K 

Ui(X,) = __ [B - b(4 loge? (~/R(O1)19 4nR(O) 

while from the equations satisfied within the vortex core they find 

I n  both formulae B is the same 0(1) expression corresponding to the effect of the 
distant portion of the ring. 2 is a constant depending upon the vorticity distribution 
in the core: 

where 

2nr(r) is the total circulation within the region of the core of radius r .  I n  the usual 
case of constant vorticity, = 4. A hollow-cored vortex has 2 = 0, and w cc r-l 
implies that 2 = 4. By comparing (A 9) and (A 10) we see that the first integral 
in (A 8) will give the value of the induced velocity a t  x, if we choose 

L = QR, exp (Q - B), 
independent of R(0). 

that given by Lamb [1932, art. 153, equation ( 5 ) ] ,  which can be written 
Of a number of closed-form expressions for the kinetic energy, the most useful is 

The inner integral always has a singularity. Once again we introduce a cut-off length 
L’, and write 

where the portion E, of the integral away from the singularity can be written 

E = E 1 + E 2 ,  (A 14) 

ds’] 
s+=-L‘ t ( s ) .  t(s’) 
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X ( \ )  
FIGURE 9. Relation of tangential cylindrical tube V, to length of portion of 

curved vortex tube T&. 

as in (A 7 ) ,  since the cross-sectional radius of the vortex loop is small; the remaining 

where Vc is the section of the loop in which Is‘ -sI < L‘. El  can be evaluated either 
exactly or numerically. 

Since all vorticity in the core is azimuthal, we can write 

where 

We now approximate Vc by a circular cylinder V ,  of length 2L’ and radius R, tangential 
to the vortex a t  x‘ = X (figure 9). Then t(s’) = t(s), so that 

Now this is the gravitational potential a t  x of the cylinder V,, with density w(r t ) .  
Therefore g(x) will satisfy 

We can deduce from (A 20) that  g(x) is a function of r alone; also we require values of 
g only on the plane through X(s). We can evaluate g(0) from the Green’s function of 

V2g(x) = -47ru(r). (A 20) 
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on integrating by parts. But (A 20) becomes 

d2g 1 dq -+-- = -47To(r), 
dr2 r dr 

so that 

g(r )  M 2K10ge (z) + 4 7 ~ / ~ ~ ~ ’ - l r ( r ’ ) d r ’  

By substituting into (A 17) ,  

- - @ 47T (log, (5) +2),  

where 2 is as specified above and C is the circumference of the loop. 

E = El ,  given by (A 15), will give the kinetic energy. 

and kinetic energy when the vortex ring is circular. The first integral in (A 8) gives 

Therefore E,  can be made small compared with E,  if we choose L‘ = Then 

It is purely a question of straightforward algebra to calculate the induced velocity 

u. ’ = - 47~R Kb [logen,+A-4 8R - I ; 
the self-induced convection velocity of a circular vortex ring is constant around the 
circumference of the ring. The kinetic energy from (A 15) is 

KE = i p ~ , R  log, - + A  - 2 . [ :: 1 
Both (A 29) and (A 30) are of course the familiar classical results, therefore we may 
have confidence in the arguments used to derive the cut-off lengths. 

Similar calculations can be performed for other shapes of vortex loop. We are 
especially interested in the plane elliptical vortex ring; suppose the major and minor 
axes are of lengths 2a and Z P .  The eccentricity e is given by P2 = a2( 1 - e2) and the 
eccentric angle is 0, so that a point X( 0) on the centre-line of the vortex core is given 
by (a cos CD, /3 sin 0 , O )  in Cartesian co-ordinates with origin at the centre of the ellipse 
and chosen such that b lies along the 2 axis; the local radius of curvature is 

R( 0) = a2( 1 - e2 cos2 @)*/p. 
Then after a good deal of algebra which is not repeated here, we find that 

e2 
1 - e 2  

+B-*+- (e2 cos2 0 - cos 2 0 ) )  (A 31) 
K b  

4nR( CD) u,(@) = ~ 

and that 
1 

KE = - PK2a [ - (1 - 8 e2) K(e)  + E ( e )  (log, - 8(ap)’ + A - l ) ]  , (A 32) 
7T RO 

where E ( e )  and K(e)  are complete elliptic functions of the first and second kinds. 
We can show from (A 31) that a useful estimate for ui, valid to within 1Oyo for 
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e 5 0.5, is the self-induced velocity of the circular ring of the same impulse (same 
area) as the elliptic ring: 

K b  u.  = ___ 
47r(ap)t 

Confidence can be felt in the expressions (A 31) and (A 32) for ui and KE for the 
elliptic ring, for as e + 0 they approach the expressions (A 29) and (A 30) for a cir- 
cular ring. The expression (A 31) for ui(@) is not constant around the circumference 
of the ellipse, although it is everywhere normal to the plane of the ellipse. Therefore 
an elliptic vortex ring cannot retain its shape as it travels, in the way that an isolated 
circular ring can, but will deform and ultimately become unstable and lose its regular 
shape. Provided that the eccentricity e is small (less than say 0.5) the rate of deforma- 
tion is small compared with the translation velocity, and (A 33) is a valuable estimate 
for the motion of the loop. Strictly, (A 33) can describe the local induced velocity 
only at  the instant when the ring is generated. 
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Note added in proof (20 February 1979) 

Some recent experiments by Professor N. V. Kokshaysky have used simple flow- 
visualization techniques based on a, cloud of fine particles t o  investigate the wake 
left by flying passerines (mainly finches). These experiments clearly demonstrate 
the presence of closed vortex loops, each generated by a single winged stroke, very 
much as predicted in $4 1 and 3 of this paper, and discussed in greater detail in 
Rayner (1979b).  Cross-sectional photographs of the wake display a vortex structure 
very similar to that shown diagrammatically in figure 3 (also figure 4 of Rayner 
1979b). The experiments are not sufficiently developed to permit measurement of 
the size and strength of the vortex elements, but they do provide effective con- 
firmation of the supposition made in this work that the wake must comprise a chain 
of small-cored smooth vortex loops. 
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